i
Final Technical Report JUN1 6 1993

March 1993 c

MULTICLUSTER

BBN Systems and Technologies
Edward F. Walker, Christopher E. Barber, James C. Berets,

Susan K. Pawlowski, Jonathan Cole,
and Natasha E. Cherniak

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

93-13403
T

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

£re SR

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-93-8 has been reviewed and is approved for publication.

-

APPROVED: %W/ /// (17¢%

THOMAS F. LAWRENCE ®
Project Engineer

FOR THE COMMANDER : .
)

JOHN A. GRANIERO
Chief Scientist for C3

e
e
¢
If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or 1if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441, This will assist us in maintaining
a current mailing list. |
®
Do not return coples of this report unless contractual obligations or notices on a !
specific document require that it be returned.
®

REPORT DOCUMENTATION PAGE GiBne6s0aores

Pl reportng burasn for s cokecton of rommetionn & sstimeted (O Sversge | NOLS DIV reancnee. Fok.cirg I I 10y reviews g £Str ciors. s-rang eostry; e wasies

GEherg 8N Martareng e deta NesCRd. INC CampISY Y and reviewng the colection o rfOMMEcr Send Corrmarts reparcrg U6 Drcien sSirmete o sy OIS pdk of s
colection of rfommation MOLCNg SUGESUIONS fOr 7ecLceg s burden, 10 A ashinggan Hesokpartes Servicas, Dreciarate for rTommeton Cow eors sc Hepons 14 S _eitesor
Davis Hyway Sode 1204 Ardngran, VA 22202-4302, mtowoﬁud Maragerrert wv Suopet, F aptrwark Reccton Proga (O 7oA O 08, Wmva i)

1. AGENCY USE ONLY {Leave Blank) "2 REPORT DATE '3 REPORT TYPE AND DATES COWI 1D
; March 1993 ¢ Final Sep i) - Febh 9!
1 L o N
4. TITLE AND SUBTITLE 5. FUNDING NUMBE RS
MULTICLUSTER O P3imboeRSeD-ta L,
PE - RIS] Pk
6. AUTHOR(S) PR = a0gn

CTA - On

Edward F. Walker, Christopher E. Barber, James (. Berets,

Wl - U6

Susan K. Pawlowski, Jonathan Cole, Natasha E. Cherniak ¥

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8 PERFORMING OHGANIZATION
BBN Systems and Technologies REPORT NUM i1
10 Moulten Street ; 7O25
Cambridge MA 021338 ;

9. SPONSORING/MONITORING AGENCY NAME () AND ADDRESS(ES) 110. SPONSORING MONITORING
kome Laboratory (C3AB) | AGENCY REPORT NUMUER
525 Brooks Rd £ RL=TR-Y3}-5

Griffiss AFB NY 13441-4505)
!

i

11. SUPPLEMENTARY NOTES
Ruwe Laboratory Yroject rngineer: Thomas F. Lawrence/C3AB/{315) 330-2805
Prime Contractor: TASC, 555 Freuch Road, New Harttord, NY 134]3-03895

120, DISTRIBUTION CObE

12a DISTRIBUTION/AVAILABILITY STATEMENT !
|
i

Approved tor public release; distribution unlimited.
PP [H

13. ABSTRAC T Maamum 200 woras)
In this report we present the implementation of multicluster operation in the Cronus
distributed computing envirvonment. A cluster is a collection o1 hests an one or move
networks. Clusters are formed to organize and contrel the relationship hetween
organizations for reaso: 4 security and administration. This document presents
the zmechanlsms to suppor: ntercluster object addressing; these mechanisms ‘orm the
basis for multicluster operation. Object-oriented distributed vmpating enviro
strive to present a uniform environment for building distributed appiications by
providing host and network transparent access to resources. Previouslv, the Cronus
distributed environment operated in an environment of different tvpes of hosts
executing across several local area networks connected by galewavs. Oronns acnieved
a uniform environment by treating the set ot hosts as a single svstem in torms o
authentivation and In binding object identifiers to their locations. To extend
Cronus to large environments, it is necessary to decompose the environment intae
collections of hosts. Decomposition is crucial to svstem scalahiiitv. It speede-
up the location of objects and reduces the number of global name spaces.

14, SUBJECT TERMS fis NumsER o oA s
Croous, Distributed Computing Fnvironment, Cluster, Multicluster P_.wnﬂhwm“hm,m
Access Dontrol i‘ﬁ PRICE COOE
11 SF CURITY CLASSIFICATION }I& SECURITY CLASSIFICATION |19 SECURITV ClASSIFICAHON 20 llMlTAHON 05 ARS HMCY
OF REPORT I"" OF THIS PAGE OF ABS |
UNCLASSTFLED { UNCLASSIFIED I\(IASSIPiLI i [
SN TSAN-0Y 2809500 Starciwo F o 0R um R
Presorbect ty ANS S (‘n‘; 8
29812

MULTICLUSTER FINAL TECHNICAL REPORT

In this report we present the implementation of multicluster operation in the Cronus distributed
computing environment. A cluster is a collection ot hosts on one or more networks. Clusters are formed
to organize and control the relationship between organizations for reasons of security and administration.
This document presents the mechanisms to suppon intercluster object addressing; these mechanisms
form the basis for mutlticluster operation.

" ACCesIor For .

[NTIS CRA&I &
S LTIC TAB 9]
" Unannotsced 0
i Joastihication o
:L...q S A v = e 101 ...—‘.___._..1
| Ry o
- ™ Oistribution |

. N \P\”ED L'"”“““”' R T T ——
1NSPECT Avelability Codes

e e e ik

|

1Ty
\prIC QUAE S .

oy Avéﬁ A;r‘»dlor
Dist specal

R

-1-

Chapter 1. Introduction

Object-oriented distributed computing environments strive t0 present a uniform environment for
building distributed applications by providing host and network transparent access to resources.
Previously, the Cronus distributed environment operated in an environment of ditferent types of hosts
executing across several local area networks connected by gateways. Cronus achieved a uniform
environment by treaung the set of hosts as a singie system in tems of authentication and in binding
object identifiers 10 their locations.

To extend Cronus fo large environments, it is necessary to decompose the environment into
coilections of hosts. Decomgosition is crucial 10 system scalability. t speeds up the location of objects
and reduces the number of global name spaces. Decomposition also accommodates the natyral
organization of computer instaliations in the real world.

This document tirst motivates multicluster Cronus by highlighting limitations of Cronus before clusters
were supported. Then some basic definitions and design goals are presented. it then focuses on certain
key design details, concentrating on the areas of communication and repfication. We then present details
of some of the new low-level communication protocols.

This document assumes the reader is acquainted with the Cronus distributed computing environment
{BS89), [WFNSO0).

Chapter 2. Limitations of Cronus Without Clusters

Without clusters, several difficulties presented themseives to independent organizations desirng to
share services with each other. To accomplish sharing, organizations would have to "link up” their
separate Cronus distributed environments into a single, inter-organizational environment. The problem
was, once this was done, Cronus had no way to distinguish one organization's collection of hosts and
services from another's. There was no straightforward way for one organization to specify that it did not
want to share a particular service with another. If an organization wanted to share one of its services, it
would have to allow access to all of its services. With clusters, on the other hand, an organization can
readily prevent access to any of its services from other organizations.

Even more problematic was that Cronus only supported the notion of a single configuration service
for a distributed environment. The configuration service plays an important role in Cronus; it serves as
the depository and source of information concerning services, hosts, and --- most significantly --- what
hosts run which services. Hosts use the information in the configuration service to determine the
services they are to run. It organizations "linked up,” they would have to deccmmission their existing
separate configuration services, and manually merge their data and deposit it in a single new shared
configuration service. But by doing 50, each organization would give up control over its own assignment
of services to hosts. if a user had permission 0 assign a service to his organization's hosts, there was
no way to prevent him from assigning it to some other organization's host as well. By linking up, each
organization gave up autonomy over its own configuration.

RL BBN

on {sd} listobjects

config manager config manager

{sd} {sd}

Figure 2-1: Anomalous Request Routing

It organizations linking up their environments chose to forego merging their separate configuration
services into one, serious operational anomalies coukd occur. The basic problem was that the system
could legitimately route requests intended for one configuration service to the “wrong™ configuration
service. A user trying to request a list of the services that run at his organization could instead get back a
list relevant to some other organization. A host's request at boot time for the list of services it is
supposed to run could go to the “wrong” configuration service.

The problem is that all these requests are invocations on a generic object. All configuration services
manage the same generic objects. Figure 2-1 illustrates the problem. A user at one organization, AL,
wants a list of services that run at his organization. To do this, he invokes the ListObjects operation on
the generic service data object, {sd). This operation will return the a list of all the service data objects L
stored at the replying configuration manager. (Each service data object contains information about one
particular service.) RU's configuration service manages the (sd) object. but so does the other
organization's. Cronus can legitimately rcute the ListObjects request to any host with the (sd} object. As
illustrated, the system chooses to route the request to BBN's configuration service. The user will get
back a list ¢f service data objects that describe BBN's services, not RL's.

L 4
With clusters, Cronus supports the notion of several independent and separate configuration services
within a single Cronus environment. Each organization can have its own configuration service, and
therefore maintain complete autonomy over its own assignment of services to hosts. invocations on
generic objects can be constrained to be routed to those belonging to a particular organization.
Two organizations “linking up” would encounter problems with other services analogous to those PY
with the configuration setvice. For example, the authentication service. Before clusters, only one
authentication service was supported per distributed environment. An organization would either have to
accept the operational anomalies that would occur if it did not give up its own authentication service, or
give up its autonomous control over its principals and groups. Another problematic service would be the
directory service, {formerly known as the catalog service). Again, each organization would have to merge
its separate service into a single new shared service. ps
With clusters, Cronus circumvents all these problems. Each organization can have its own separate
authentication service and directory service. By adding clusters to Cronus, the system can recognize and
respect organizational boundaries.
®
e
®
®
o

Chapter 3. Definitions, Goals, and Design Overview

Clusters allow boundaries to be erected between organizations. This chapter will define a cluster
precisely. With that definition, we can examine some of the facilities that suppornt inter-organizational
cooperation and sharing.

3.1 Clusters

A cluster is a set of hosts grouped together into a single administrative unit. Each cluster is
autonomous, responsible for its own administration and control. No host is permitted to be a member of
more than one cluster.

Physical network layout does not have to play a part in determining host cluster membership. Two
hosts on the same physical local area network can belong to different clusters. Two hosts widely
dispersed and connected by a long-haul network can belong to the same cluster, as shown in Figure 3-1.

Network B Network A

N\

Figure 3-1: Network Topology and Cluster Boundary

LA

Cluster ®

Clusters are intended to allow administrative units to maintain control over their part of a Cronus ®
environment, yet share services across cluster boundaries if so desired.

3.2 Sharing Services

A cluster is not an isolated unit: clusters can cooperate and share services with one another. if a
cluster supports a service, it can permit other clusters {0 access that service. If a cluster does not permit
access 10 a service, then operation requests from foreign ciusters on objects managed by the service will
be summarily rejected. If the cluster does permit access, the request is accepted as iong as the requester
has the necessary access rights as specified on the object’'s access control list.

Each cluster must explicitly enumerate which foreign clusters have access 10 its services. A service
to which access by a foreign cluster is permitted is called an exported service, or simply an erport. The
service is saic 1o be exported to the foreign cluster.

A cluster must explicitly declare that it wishes to access a service exponed by a foreign cluster. An
exported service to which a cluster desires access is called an imported service, or simply an import. The
service is said to be imported from the foreign cluster.

If a client in cluster B wishes to access a service S in cluster A, then A must export the service 10 B
and B must impon the service from A. If the service is imported but not exported, the service will reject
any access attempt trom B. it the service is exported but not imported, hosts in Cluster B will not be able
to locate any ot the objects. See Figure 3-2..

Cluster A Cluster B

Service S

Ciient
- O
Access OK Import S from A
ExportStoB

Figure 3-2: Importing and Exporting a Service

3.3 Replicating Services

A cluster can permit objects managed by its services to be replicated in foreign clusters. This is a
stronger notion than merely permitting access to a service trom foreign clusters. Permitling objects 1o be
replicated across cluster boundaries implies that the service itseff spans cluster boundares, and thus
several clusters must cooperate with regards to the administration of the service.

A cluster must explicitly declare the foreign clusters where objects of one of its services may be
replicated. The toreign clustars are called the domain ot the service.

For a replicated service to run successfully across cluster boundaries. ali clusters involved in the
replicated service must agree on the service's domain. if ciyster A lists B as part of the domain of service
S, then B must list A as part of the domain of S. Similarly, it A lists 8, and B lists C, then A must also kst
C.

it a foreign cluster is a member of a service's domain, the service is implicitly considered to be
exported and imported to the ciuster.

Cluster A Cluster B

Service S

Service §

O-

=N

A is in the service
domain of S

B Is In the service
domainof S

Figure 3-3: Service Domains

3.4 Contiguration Control

In addition to providing configuration control within a cluster, the Cronus Cortfiguration Manager has
been extended to maintain a cluster's information about its impons, exports, and service domains.

3.4.1 The Contiguration Service

The information about a cluster's imports, exports, and domains is stored by the clusters
configuration service. Each cluster must run the configuration service, and it may not have any foreign
clusters in its sarvice domain. This restrction ensures that every cluster maintains autonomous control
over its service configuration. The right to modify and create objects managed by the configuration
service should be a closely guarded right, restricted to a few trusted and authorized individuals, and
never granted to individuais whose “home” is a foreign cluster.

The Configuration Manager manages three types of objects: Host_Data objects. Service_Data
objects, and Cluster_Data objects.

Cluster_Data Service_Data Host_Data
ClusterName: RL ServiceName: A .
N :
1D: 432 TypesManaged: :‘:j‘re;"_" sox
Description: CT_s1,CT a2 189.12 iz
Rome Laboratory HostsRunOn: sox ServicesRun: A
Contact:
sdmin@riaf.mil Exported To: RL
! .
MemberHosts: Imported From: Dg:‘,: '::,‘::m tion
hostl.riaf.mil, Domain:
host2.ri.af.mil,
hostd.rial.mil
ServiceName: B .
Exports: A TypesManaged: HostName: pats
Imports: B CT bt Address:
Domain: C HostsRunOn: 189.02.13
ServicesRun: C
Exported To:
Imported From: RL Description:
Domasin: Machine in room
6/3%6.

ServiceName: C

TypesManaged:
CT ¢1,CT_c2

HostsRunOn: pats

Exported To:
Imported From:
Domain: RL

Figure 3-4: Exampie Configuration Database

A cluster's configuration service has a Host_Data obiect for each host that is a member of the cluster.

The Host_Data object for a given host contains the hosts name, address, and a list of Service_Data
object identifiers identilying the services instaited on the host.

A Service_Data object records information about a service. it contains the service's name. the set of
the types the service manages, and the set of Host_Dala objects identitying the hcsts where the service
is instailed. 1t aiso contains three sets of Cluster_Data objects. The first identifies the clusters the
service is imported ‘rom, the second identifies the clusters the service is exported to, and the third
identifies the cluster - .0 the service’'s domain.

A Cluster_Data object stores infoimation about a foreign cluster. [t contains the cluster's symbolic
name and its unique cluster identifier. It also contains three sets of Service_Data objects. The first
identities the services imported from the cluster, the second identifies the services exponed to the
cluster, and the third identifies the services whose domain includes the cluster. The Cluster_Data obje~t
also contains a list ot the (P addresses of some of the hosts belonging to the remote cluster. (This hist
provides a list of “‘contacts” in the remote cluster. As wiil be discussed, the multicluster location algoithm
finds an object in a remote cluster by delegating the task to some host in the remote ctuster The hostis
chosen from the host list maintained in the Cluster_Data object)

3.4.2 Contiguration Management Tool

Mutticiuster Cronus adds to the work required to administer a Cronus distributed computing
environment. ine administrator is no longer just responsible for maintaining his own organization's
internal configuration of hosts and services. In Mutticluster Cronus, the administrator must also meintamn
the service sharing relationships with outsida organizations.

Crorus Cluster Exariney

{ Llom J (Create Cluster)(write Dump Fle)(Read Dump Fle) (Chieck inconsistencies } (Select Tlusters j { aw i

r ‘ ~ ’ i=
el et ; et
aj {cle plely al Icjc PIPIY a lcye riply
ul jolo cleip ul lolo olelp u| ioto cielp L
t| |nis liale t}| infs liale t| .nils liale
nio|Fididimilit |d hio|Fldidim|l]|cid o Fid{dimil tid
ejujril]ijcleie e ejulifiji|cleie e eu!xlx:eee
niglg|r slririf niglgiriris|ririf nigiglririsieir!tf
Lon m: hbn bbn D ||
cecom cecom | cecom i
rnose i nosc nosc ; i o
ri ii:l rl rl | ,
Expaorts Imports Service domains
Figure 3-5: Configuration Management Tool ;
@
To lighten the burden of these added tasks on administrators, an interactive tool was developed. The
main screen of the tool is shown in Figure 3-5. The names on the sides of the gnds are cluster names;
the names on the 1op are service names. A black square indicates the given service is exported (or etc)
o

0 the given cluster. To expont {or etc.) a service 10 a cluster, the administrator just clicks the mouse in
the appropriate place in the grid. Similarly, to stop exporing {or etc.) a service 10 a cluster, the
administrator just has 10 click on the appropnate blackened point in the gnd. With the tool. it is very easy
for an administrator {0 Quickly view service sharing relationships with other clusters, and change those
relationships it need be.

An additional complication caused by mutticluster operation is the possibility of inconsistencies
existing between clusters. The tool helps identity inconsistencies. Each cluster has completely
autonomous controt over its configuration. Although this is a desirable quality, it raises the very real
possibility that clusters fail to cooperate properly and thus fail 10 establish consistent service shanng
relationsnips between themselves. As has been discussed, it is important that service domains be
consistent. For example, if cluster A lists B as part of the domain of service S, but B does not list A, an
inconsistency exists. Inconsistencies in service domains can cause replicated services to malfunction.
Another type of inconsistency involves imported services. A cluster can import a service from a foreign
Cluster that does not export it. it a service is imported, the administrator probably believes the service is
accessible, and might iike to be warned if this is not the case.

When the Check Inconsistencies button shown in Figure 3-5 is clicked, the tool checks for
inconsistencies in service domains, and for imported services that are not exported. The tool does this
by comparing the information in its own cluster's configuration service with that stored by each
appropriate foreign cluster's configuration service. For the tool 1o be able to access a remote cluster's
configuration service, it must be imported by the local cluster and exported by the foreign cluster. Cnce
the tool is finished searching for inconsistencies, it displays any it finds to the user in the manner shown
in Figure 3-6.

Number of ercors found 3 (Ae-creck) (caxs)
Fatal Errors
AN nconsistency n the doman for service bug has been found in ckister bon

Errors

Chuster cecom 1mports service bug which Is not &@orted by any cluster
Chuster bbn mports service polier which is not exported by any cluster

Figure 3-6: Configuration Management Tool Error Repornt

210 -

Chapter 4. Key Design and Implementation Details

In this section we provide detailed discussion of several kay aigorithms and approaches that provide
robust multicluster operation.

4.1 Object Location

Cronus supports location-independent invocation; the location of an object does not have to be
supplied when invoking an operation on it. The system takes complete responsibility for finding a copy of
the object and directing the invocation request to it. The part of the system that locates objects is cailed
the Locator. The Locator is part of the Cronus Kernel. Once the Locator tinds an object, information
about its location is stored in the Kemel's focation cache. The Locator is used only it relevant information
is not first found in the location cache.

The Locator was completely redesigned and reimplemented for Mufticluster Cronus. The old Locator
was very simple, but suftered from some severe limitations. To find an object, the Locator would
broadcast a Locate invocation on the object. The broadcast would be heard by every host on the
network, {(except those that dropped the incoming unreliable broadcast message). !f a host had a copy ot
the objeqt, it responded affiatively. if a host did not have a copy, it did not respond. The Locator
would wait for an affirmative response. f one was not received within about five seconds, the Locator
reported a LOCATE_FAILED error.

Network B Network A

Broadcast
Repeater

Figure 4-1: Broadcast Repeater

11 -

The old Locator relied on Broadcast Repeaters in Cronus environments encompassing more than
one network. Network gateways do not forward broadcasts; a broadcast on one network is not heard on
another. The old localor relied on every host hearing its broadcast Locates, regardiess of the physical
network topology. Cronus uses Broadcast Aepeaters to make sure a broadcast on one network is heard
on ali other networks. A Broadcast Repeater is run on one host on each network. It is given a hist of
hosts, each on other networks, 1o repeat broadcasts to. When the Broadcast Repeater's host hears a
broadcast, it is provided 1o the Broadcast Repeater. The Broadcast Repeater then transmits the
message 10 all the hosts on its list. These hosts then rebroadcast the message. {(They aiso tag the
message So that it will not be repeated again.} See Figure 4-1.

The old Locator suffered from several problems and fimitations. First, it was not robust. The old
Locator relied on a single broadcast to find an object. in some environments it 1S hot uncommon for the
network to regularly drop broadcast messages. Second, the oid Locator did not scale well, since it made
every host process every locate. Third, it required the use of broadcast repeaters between networks,
complicating the maintenance and administration of a Cronus environment. Fourth, the arbitrary five
second wait for Locate replies was not appropriate for widely dispersed systems.

We established the foliowing major requirements for the new multicluster Locator design.

1. The Locator must be robust, meaning that it must rot fail 1o locate an avadabie object. it an
irrelevant host {not ~ne where the requester or object resides) crashes, the location attempt
should not fail.

2. The Locator must be efficient, meaning it must avoid communicating with hosts that do not have
the object.

3. The Locator should find objects in a timely fashion.

The multicluster Locator satisfies these requirements. The oid Locator, on the other hand, failed to
satisfy the first two. in the situation where a Cronus environment encompassed more than one network,
necessitating use of a broadcast repeater, a failure of the repeater host or the host repeated to could
cause the old Locator to fail to find an available ohiect. The old Locator certainly did not satisly the
second requirement, since it broadcast Locate requests ‘9 every host in the distributed environment.

The new multicluster Locator works basically as follows. The Locator is given the unique identifier
(UID) of an object to find. The UID contains information identitying the type of the object. The Locator
first extracts the type of the object from the UID. It then identifies the service that manages the type as
follows. The Locator first checks a cache it maintains of service information. if this is unsuccesstul, the
Locator contacts the local cluster's configuration service. The configuration service keeps track of which
services manage what types. The configuration service sends back information about the proper service,
which the Locator then stores in its cache.

The information about a service that the configuration service returns to the Locator (and that is
cached) includes the following: (1) a list of the hosts in the local cluster that run the service, (2) a list of
the clusters the service is imported from, (3) a list oi the clusters in the service's domain, and (4) a list of
hosts in each cluster mentioned in items (2) or (3). This information comes from data stored in the
configuration service's relevant Service_Data, Host_Data, and Cluster_Data objects.

The Locator then makes use of the list of hosts in the (local) cluster that run the service. The iocator

sends each one of these hosts a Locate request, as illustrated in Figure 4-2. Here two hosts, a.bbn and
b.bbn, are registered with the configuration service as running the service that manages the appropriate

212

type. (The Locate messages are transmitted using UDP, an unreliable protocol. The Locator times out
and retransmits them to guard against message 10ss.)

CLUSTER BBN CLUSTER RL

Figure 4-2: Contacting Local Cluster Hosts

The Locator then makes use of the rest of the information about the service to search for the object in
remote clusters. A host in every cluster the service is imported from is sent a ProxylLocate reques!.
Likewise, a host in every cluster in the service’'s domain is aiso sent a ProxylLocate request. The
ProxyLocate operation is invoked on the generic Cronus_Host object; the UID of the object being located
is inciuded as an argument. The Cronus Kernel manages the generic Cronus_Host object; every Cronus
Kernel manages such an object. (Every host runs the Cronus Kemel.) A Cronus Kernel that receives a
ProxyLocate request looks for the specified object in its own cluster, and then sends back a reply
indicating the object was found and its location, or else a negative reply. The ProxyLocate request is sent
using a reliable protocol (TCP).

CLUSTER BBN CLUSTER RL

Figure 4-3: Contacting Remote Clusters

-13-

Figure 4-3 illustrates this step. In this case, the service is imported from cluster RL. The service
information inciudes a list of scme of the hosts in cluster RL, which includes the host “x r1." The Locator
chooses “x.ri” from the list and directs a ProxyLocate request to it. (The Locator's choice of a host from
the list is fairly arbitrary.) “x.rl's” Cronus Kernel then has its Locator look for the object in just its own
cluster. “x.r's™ Locator follows the same steps discussed above to accomplish what was illustrated in
Figure 4-2. “x.rI's” Locator sends out Locate requests to each host in its cluster running the relevant
service and coliects the responses. If all are negative, it sends a negative renly back to BBN's Locator.
It one is successful, a positive reply to the ProxyLocate is transimitted immediately.

If the attempt to send the ProxylLocate to “x.ri” fails because it is down, BBN's Locator selects
another host from its list of hosts in cluster RL, and tries again.

BBN's Locator waits for responses to its Locate and Proxylocate requests. The Locator stops with a
successful outcome when the first positive reply is received. If all the replies are negative, the Locator
becomes suspicious that its cached service information is out of date. I the service was instalied on an
additional host since the information was cached, or if the service was imported from an additional
cluster, and If the object resides on the added host or in the added cluster, the Locator will abviously fail
to find it.

The Locator checks if its cached service information is out of date by calling upon its local cluster's
configuration service. The configuration service maintains an ascending modification count for each
service. The Locator stores the modification count for each service in its cache. Checking if the cached
information is out of date is a simple matter of comparing the actual versus the cached modification count
for the relevant service. If the cache is out of date, it is updated, and the Locator tries 10 locate the object
anew. If the cache proves 1o be up to date, the Locator reports back a LOCATE_FAILED error.

A host processing a Proxylocate also similarly checks if its cache is out of date if it 1ails to find the
requested object.

A summary of the full Location algorithm follows. This summary includes some details not mentioned
in the discussion above. The steps the Locator takes to find an object of type T are as foliows:

1. The Locator broadcasts a “Locate” request for the object. The broadcast will only be heard by
hosts on the local area network and any networks repeated to by a Cronus Broadcast Repeater.

2. The Locator starts listening for a positive response to any “Locate” (or “Proxylocate”) request. if
one is received, the Locator immediately terminates this algorithm at that point, having
successfully found a host that has the object.

3. The Locator iooks in it location cache for information about T. The cache stores information
previously obtained from the Configuration Manager about the location of the services that
manage each type.

it nothing for type T is found in the location cache, the Locator continues with Step 8.

5. (Information for T was found in the location cache.) The cache information includes the list of the
hosts running a manager of type T. If this list is empty, the Locator continues with Step 7.
Otherwise, a “Locate" request is sent to each of these hosts, using the User Datagram Protocol
{UDP). it a response is nol received to one of these requests within a set time period, the request
will be retransmitted.

6. The Locator waits a fraction of a second.

-14 -

7. The cache information aiso includes the clusters in the sarvice's domain and the clusters it is
imported from. The cache also stores a list of hosts in each cluster. A “Proxylocate” request is
sent to a host in each cluster in the service's domain and to a host in each cluster the service is
imported from using a reliable protocol. it the request fails because a host is unreachable,
another host in the cluster is chosen and the request is retransmitted. The deslination host
processes the “ProxylLocate” by following this iocation algorithm, except that this Step and Step
1. are omitted, and reports back the result.

8. It the locate receives a positive response to a “Locate” or “Proxylocate,” then the object has
been found. If not, then the Locator waits for a negative response to each "Proxylocate,” and for
either a negative response to each “Locate™ sent to a host within the local cluster or a timeout to
occur.,

9. Having failed to find the object, the Locator assumes that its cached location information is
incorrect. it communicates with the Configuration Manager to see if its information for T is out of
date. Iif not, the Locator terminates reporting LOCATE_FAILED. It so, the Locator updates its
cache and starts over with Step 3. If this step is reached again, the Locator immediately
terminates and reports LOCATE_FAILED.

The broadcast performed in Step 1 serves severai purposes. First, the least loaded and/or “closest”
manager with the obiject is likely to respond to the broadcast first, resulting in desirable load-balancing
qualities. Second, before the Locator can obtain any location information from the configuration service, it
must first locate a Configuration Manager. The broadcast provides a mechanism for finding a
Configuration Manager. Third, the broadcast will locate objects that are not registered with the
configuration service; this is a common case when new services are being developed and tested.

Several features of the location aigorithm work to make it robust. In Step 5, a “Locate” request is
sent 1o each host individually. This is an important robustness feature for clusters encompassing more
than one locai area network. If the broadcast "Locate” request was the only means of finding objects
residing in the local cluster, the Locator would be susceptible to failures of the host running the Broadcast
Repeater, or the host the Broadcast Repeater forwards broadcasts to. Neither of these hosts need be
where the requester or object resides, and yet the failure of one of them could prevent the Locator from
finding an object.

In addition, in Step 5 an individual “Locate” request is retransmitted if no response is received. Since
the request is transmitted using an unreliable protocol, this guards against failing to find an object due to
message 105s.

The fashion in which the Locator searches for objects in foreign clusters also has several features
that make it robust. In Step 7, the “ProxyLocate” request is transmitting using the normal Cronus reliable
transmission protocol. This ensures that a reply {or an error) is eventually received. In addition, if the
chosen host in the foreign cluster turns out to be down, the Locator then tries another. If the Locator did
not do this, the crash of a host not containing the object could cause the object not to be found.

4.1.1 Alternative Locator Design

We had considered a Locator design that extended the Broadcast Repeater to a Cluster Broadcast
Repeater. The basic idea was to simply repeat Locate broadcasts in remote clusters.

This scheme was attractive since it appeared to require relatively little implementation work; in
particular the old Locator would not need modification.

<15 -

There were some serious problems with this approach. First of all, this scheme violated our goal of
efficiency for the Locator, since the Locator would require every host in every cluster to process a Locate.
The multicluster Locator limits its search of the object to those clusters a service is imported from and to
those in the service's domain. Secondly, the Cluster Broadcast Repeater would suffer from the same
robustness problems as the original Broadcast Repeater. a crash of the host running the Repeater or of
the host it repeated 1o would cause locates to fail. This violated our robustness goal for mulicluster
object location.

To try to fix the efficiency problem, we investigated adding a cluster 1D to object UID's. The cluster
1D would indicate the cluster in which the object resided. This scheme was rejected since it abandoned
the previous stance in Cronus of not encoding an object’s location in its UID. Piacing a cluster 1D in a
UID would have made it difficult, if not impossibie, 1o support migrating an object from one cluster to
another.

4.2 Invocation Request Delivery Options

Cronus supports location independent invocation. A client does not have to supply any location
information when invoking an operation on an object. The system itself finds the object and routes the
invocation request to it.

in cases where more than one instance of an object exists, however, it is sometimes desirable to
have control over which instances are eligible 1o receive the invocation. For example, when invoking an
operation on the generic Host_Data object, managed by every Configuration Manager, one might desire
to have the operation processed by an instance in a particular remote cluster. A concrete example would
be to obtain the list of hosts in a specific remote cluster.

The Cronus manager development tools generate RPC stubs that send operation requests o
managers. The INVOKECONTROL argument in these stubs allows control over the instances eligible to
receive a particular invocation. A NULL value, the common case, will result in the invocation being routed
by the system to the first object instance it finds.

When an INVOKECONTROL struciure is provided, three fields specify the instances eligible to
receive the invocation: HostUse, Host, and Cluster. The interpretations of the Host and Cluster fields
depends upon the value of the HostUse field. The semantics of the choices for the HostUse field are
given below.

HOST_ANY
Any object instance can receive the invocation; the values of the Host and Cluster tields are
ignored. This is the default behavior.

HOST_HINT
Same semantics as HOST_ANY, except that the Host specifies a host where the sender
believes the object to be.

HOST_DIRECT
Only the object instance at the host specified by the Host fizld is eligible to receive the
invocation.

HOST_ANY_IN_CLUSTER

Any object instance residing in the cluster indicated by the Cluster tield can receive the
invocation; object instances in other clusters are ineligible.

-16 -

b

HOST_HINT_IN_CLUSTER
Same semantics as HOST_ANY_IN_CLUSTER, except the Host lield specities the host
where the sender believes the object resides.

HOST_ANY_IN_DOMAIN
Any object instance residing in the service domain of the object’s type is eligible to receive
the invocation. Any object instance not residing in the local cluster's service domain for the
type is ineligible to receive the invocation.

HOST_HINT_IN_DOMAIN
Same semantics as HOST_ANY_IN_DOMAIN, except the Host field specifies a host where
the sender believes the object resides.

An example of an application that requires control over the instances eligible to receive an invocation
request is the configuration management tool. One of the tool's functions is 10 check a foreign cluster's
configuration information against the local cluster's for inconsistencies. in order to obtain a particular
foreign cluster’s configuration information, the toot must be able to specity that an invocation on a generic
Service_Data object is only to be sent to the a genenc object in the foreign cluster. This ensures that a
Configuration Manager residing in the foreign cluster answers the request.

HOST_ANY_IN_CLUSTER is implemented as foliows. Each location cache entry consists of an
object’s UID, the address of a host it resides on, and the id of the cluster the host belongs to. When a
request is sent using HOST_ANY_IN_CLUSTER, the kernel first tries to use the location cache to
determine the target host. The kernel looks for an entry in the location cache that matches both the
object’s UID and the proper cluster id. If one is not found the Locator is asked 10 find the object, with the
condition that the discovered location belong to the proper cluster. The Locator basically foliows the
steps it normally does, except it omits any steps that send messages to clusters other than the one
specified.

HOST_ANY_IN_DOMAIN is supported in a similar fashion, except here there are several clusters the
target host is permitied to belong to {in general) instead of just one. The Cronus Kernel determines the
clusters in the service domain by consuilting its cached information for the service that manages the type
of the relevant object. (The local cluster is always considered implicitly inciuded in the service domain.)

HOST_HINT_IN_DOMAIN (and HOST_HINT_IN_CLUSTER) are implemented by first sending the
request to the supplied hinted host address. If the hint turns out to be incorrect, the message is returned
to the original sender. The original sender then changes the HostUse to HOST_ANY_IN_DOMAIN (or
HOST_ANY_IN_CLUSTER) and starts over.

in addition to directing an invocation to a single object instance, one might want to broadcast a
message to several instances of an object. The following HostUse field values specify that an invocation
request is to be distributed to several object instances and gives control over the set of instances eligible
to receive the request:

HOST_ALL
A copy of the invocation is sent to all instances of the object.

HOST_ALL_IN_CLUSTER
A copy of the invocation request is sent to all instances of the object in the cluster specified
by the value of the Cluster field.

-17-

HOST_ALL_IN_DOMAIN

A copy of the invocation request is sent to all instances residing in the local cluster's service
domain for the object type.

Reliable delivery is not provided when a request is broadcast to several instances. The request might
be received by some eligible instances, but not by others.

CLUSTER A CLUSTER B

)
ProxyDistribute

request

Figure 4-4: HOST_ALL Implementation

HOST_ALL is implemented as follows. The kernel looks up the service for the type of the target
object in its service information cache. if there is no information for the type in the cache, the request is
broadcast.

if there is information for the type in the cache, the HOST_ALL request is sent as foliows. The
cached service information includes the list of hosts in the local cluster that run the service. Each one of
these hosts is sent the message via UDP, an unreliable protocol. The cached service information also
includes the list of clusters the service is impornted from, plus the clusters in the service's domain. A host
in each one of these clusters is sent a ProxyDistnbute request via TCP, a reliable protocol. The
ProxyDistribute is an operation invocation on the generic Cronus_Host object; it includes the HOST_ALL
request as an argument. The generic Cronus_Host object is managed by the Cronus Kernel. A kemel
that receives a ProxyDistribute request uses its cached service information to send the HOST_ALL
request to each host in its cluster via UDP. If the kernel has no cached information for the type, it
broadcasts the HOST_ALL request. Ses Figure 4-4.

if the cached service information is out of date, the message might not be sent to all the managers it
should be. This is acceptable, since HOST_ALL is specified to be unreliable; delivery is not guaranteed.
To prevent a host’s cache from being out of date for a long period of time, the configuration service
notifies each host in its cluster individually whenever a service’s configuration is altered.

HOST_ALL_IN_CLUSTER and HOST_ALL_IN_DOMAIN are implemented in a tashion similar to
HOST_ALL. The same steps are used as in the HOST_ALL case, except messages going to clusters
othar than the desired ones are not actually transmitted.

-18-

4.3 Intercliuster Replication

The Cronus replication algorithm required only minor enhancements 1o be able to accommodate
services that are repiicated across cluster boundaries.

When a replicated manager is first installed, it needs to contact one of its peers in order 16 obtain
tocal copies of replicated objects. To find a peer, the old algorthm broadcasted a locate request. In
multicluster Cronus, this approach is inadequate since broadcasts are not heard across cluster
boundaries. instead, the iocate is “logically broadcasted” throughout the service domain, by using the
new HOST_ALL_IN_DOMAIN request delivery option.

A peer replicated manager needs to be able to manipulate its fellow peer managers. For example, it
must be able to transmit updated objects to its peers in order to keep their copies current. In order to
accomplish this, each peer needs access control permission to carry out the necessary operations on its
peers. This access was previously achieved by requiring each peer run under the same Cronus prncipai
UID. (Managers, like all processes running under Cronus, run under some Cronus principal.) The Cronus
access control algorithm permits a caller running under the same principal as the callee to perform any
operation.

We chose not to require that each peer run under the same principal in multicluster Cronus. We fell it
was desirable to support the case where each peer's principal was managed by that peer's ciuster's
authentication service. Cronus principal objects cannot be replicated across cluster boundaries. To
ensure cluster autonomy, multicluster Cronus restricts the service domain of the authentication service to
a single cluster. (This is also true of the contiguration service.) Therefore if peers in different ciusters are
to run under locally managed principals, peers must be permitted to run under different principals.

To permit this, for a service whose domain includes remote clusters, the configuration service stores
a list of pnncipals used by peers residing in remote clusters. A manager obtains this list of peer principals,
and if a caller's principal is on the list, the caller is permitted to invoke any operation.

4.4 Kernel Virtual Reliable Connections

Unlike older implementations of Cronus, multicluster Cronus does not place any limit upon the
number of reliable connections that may be open at one time. Mylticiuster Cronus accomplishes this by
muitiplexing a limited number of physical TCP connections among reliable virtual connections. This is
done in a fashion that protects against undetected message loss and message reordenng on the virtual
connection.

Most of the operating systems Cronus runs on impose a limit on the maximum number of TCP
connections a process can have open at a given moment. in particular, most versions of Unix allow no
more than about sixty concurrently open connections. in oider implementations of Cronus, once this limit
was reached, attempts to establish new connections resufted in “host inaccessibie” errors. Normally this
error is reported only when the destination host is down or the network has failed.

in multicluster Cronus, it was suspected that the connection limit could be especially problematic,
because of the connections used by the Locator. The multicluster Locator makes use of reliable
connections to communicate with remote clusters. Therefore a kemel could need several connections to
tak to remote cluster hosts, plus several more that remote clusters hosts could have established to it to
use it as a proxy for locates. Therefore a Cronus kernel potentially might have to have a substantial
number of connections open just 10 support locates, leaving few connections left for actually transmitting

-19 -

application requests to their ultimate destinations. In any case, the restriction on open connections i1s
unpalatable since it effectively restricts the number of remote hosts with which an application can reliably
communicate.

Each virtual connection has its own message queue. When a virtual connection has no assigned TCP
connection, any messages that to be transmitted on the virual connection are merely added to the end of
the queue. When a virtual connection does have a TCP connection assigned to it, messages to be
transmitted are still added to the end of the message quseue, but when the TCP connection is ready to
accept data for transmission, the first message is taken off the queue and transmitted.

Whenever there is a virtual connection without a TCP connection, the system chooses a virtual
connection with an assigned TCP connection and starts the process of deassigning it. Once the TCP
connection is deassigned and closed, the waiting virtual connection is allowed 1o open a TCP connection
and start transmitting its queued messages. A TCP connection is deassigned by placing a marker at the
end of the message queue. Once the messages before the marker in the queue are all transmitted, the
connection is ready to be closed. Al this point, no more queued messages will be transmitted using the
TCP connection.

The connection closing algorithm uses a handshake 10 ensure that no messages are lost. First a
“"Ready to Close" message is sent to the destination host on the other end of the connection. Once the
other end receives this message, it starts the process of deassigning the connection if it has not already
done so. Eventually the other end sends back a “Ready to Close” message. At this point, an “"OK to
Close” message is transmitted. An “OK to Close” message is transmitted whenever one side of &
connection has itself transmitted a “Ready to Close” and has received an “Ready 1o Close” message
from the other end of the connection, signifying that both ends of the connection have agreed not to use
the connection further. (Thus the other side transmits an “OK to Close” message at this point as well.)
The first side that receives an “OK to Close” message closes the connection. After transmitting the “OK
to Close” message, an "OK to Ciose” message is either received or the connection is broken, the latter if
the other end processes the “OK to Close” before this end gets its “OK to Close.” When the connection
is closed or broken, it frees up a descriptor s0 that a TCP connection can be established for a virtual
connection that needs one.

The aigorithm uses a queue marker when deassigning a physical connection to ensure that progress
is made with regards to message transmission. Using the marker avoids a possible situation where the
system could thrash constantly deassigning and assigning TCP connections to virtual connections, but
without any actual application messages being transmitted. The marker ensures that all messages that
have been waiting for a virtual connection to get a real connection get transmitted once the virtuai
connection is awarded a real connection.

When opening a physical connection, it may be the case that the target host does not have an
available TCP connection. Every host tries to keep a TCP connection free at all times. When a
connection is made that causes the last connection to be used, a “refusal” message is immediately
transmitted down the connection and it is then closed. When a host sends such a “refusal” message, it
opens a virtual connection to the source host, so that eventually the refusing host will itself initiate a
physical connection to the source host. A host that is refused a connection earmarks an available
connection only to be used when the refusing target host eventually initiates a connection. This ensures
that the connection will be successtully set up when the intended target initiates the connection. This
ensures that two hosts do not thrash constantly tryirij to connect to the other and being refused each
time.

-20-

Setting an available connection aside when a connection is refused creates the potential for
deadiock. The worst situation that could occur would be all hosts setting aside all avaiiable connections
To avoid deadlock, a certain number of physical connections are set aside only 1o be used to accept
incoming connections and make outgoing connections to formerly retused hosts.

4.5 Directory Sharing

The directory service supports a hierarchical symbolic name space for Cronus objects. (The directory
service has in the past also been known as the catalog service) See Figure 4-5. The leaves of the
name space tree are entries cc ‘aining arbitrary object UiD’s. Pathnames are formed Dy separating the
component names with “’s.” For exampie, in Figure 4-5, the path name :cronus.config:hosts.pats
resolves 10 the identifier of a particular Host_Data object. presumably the one that contains informauon
about the host named pats.

pats (Host_Data)

hosts <
conflg < sox (Host_Data)
g

services
T mad (COSFile)

cronus
user

dart

dbs — croracle (Oracle)

Figure 4-5: Directory Name Space

To ensure that a cluster has autonomous control over its own directory name space, the service
domain of the directory service is limited to a single cluster. The same directory cannot be stored in two
different clusters.

In multicluster Cronus, one can mount a remote cluster's directory name space. This makes the
remote cluster's entire name space appear to be hung off an arbitrary path name in the local cluster's
name space. In Figure 4-6, cluster BBN's entire name space is hung off cluster RL's path name
;mt:bbn. For example, a RL. user can use the pathname .rmf:bbn.dbs:croracle 10 look up the object
stored in BBN's name space under :dbs.croracle. RL's pathname .rmt:bbn is called a mountpoint.

Mountpoints are easily created by using the createmount command. The mountpoint shown in Figure
4-6 was created by the administrator typing createmount bbn :rmt. For a remote directory to be mounted
successfully, the mounting cluster must import the directory service from the remote cluster, and the
remote cluster must export it 10 the mounting cluster.

Mountpoints simplify accessing remote cluster directory name spaces. Without mountpoints, users
would have to explicitly specify the cluster whose directory service should resolve a given path name.
When mountpoints are used, path names can always be submitted to the local cluster's directory service.
Mountpoints also permit symbolic links from the local cluster's name space into the remote cCluster's
name space 1o be readily supported.

-21-

Mountpoints are implemented as follows. Mountpoint entries in the directory name space contain the
UID of the root directory in the remote cluster, and an indication that it is a mountpoint, rather than a
normal directory. When the directory service encounters a mountpoint when resolving a pathname, i
invokes an operation on the foreign root directory to resolve the rest of the pathname.

config
Sl
motd
user
BBN :
: dart
bbn
4
mt /conﬂg
cronus \
motd
user
RL :
Y admin

Figure 4-6: Mounting a Remote Directory

4.6 Cronus Commands

Most of the Cronus commands had to be upgraded to function properly in a multiciuster environment,
The command implementations were changed to make sure requests were processed in the proper
cluster. For example, the displayservice command displays a list of all services. The desirable behavior
tor displayservice is that it lists the services known to the local cluster's configuration service. This
command is implemented by invoking the ListObjects operation on the generic Service_Data object. As
was illustrated in Figure 2-1, by default a request on a generic object can legitimately be routed to any
cluster. The displayservice command's implementation must be careful to constrain the generic
Service_Data objects eligible to receive the ListObjects request to those residing in the lecal cluster.
Therefore, the ListObjects on the generic Service_Data object was changed to use the
HOST_ANY_IN_CLUSTER delivery option discussed in section 4.2.

A /cluster qualifier was aiso added to several commands. This qualifier was added to commands that
normally display information conceming the local cluster. The qualifier permits the user to instead force
the command to display information about any desired cluster. For example, the dispiayservice
command suppons the /cluster qualifier. The command Jisplayservice /cluster=bbn lists all the services
defined by cluster bbn’s contiguration service.

-22-

O

4.7 Authentication

Mutticluster Cronus provides privacy: the protection against unauthorized release of data. Data in
messages can be protected by encryp'ing it with a secret key known only lo the sender and receiver.
Assuming that the encryption algorithm is secure and that keys are not divulged, no unauthorized party
can decrypt a message.

Mutticluster Cronus aiso provides fo. authentication: the assurance that when two parties interact with
one another, each is certain of the other's identity. Only hosts that have been registered with the
authentication service can successiully issue and process secure requests.

Just as each cluster has autonomy with regards to its configuration (e.g., the assignment of services
to rosts), each cluster also has autonomy with regards to authentication. Each cluster has the
responsibility of creating and maintaining principats for its members, and for safeguarding their secret
keys. Each cluster must run the authentication service. The authentication service may not have any
foreign clusters in its domain. This ensures that each cluster maintains sole control over its authentication
information.

4.7.1 Request Security

There are three types of security ‘or requests and their associated replies, listed in order of
increasing safet. The Security field of the INVOKECONTROL structure is used to specity a request's
security. The field may contain any of the following values:

SEC_NONE
Self-explanatory.

SEC_AUTHENTICATED
Messages contain an authenticator.

SEC_PRIVATE
Mess~ges contain an authenticator and the data portion will be encrypted.

4.7.2 Ticket and authenticator formats
The format of the tickets and authenticators used in the authentication scheme are as follows:

Kernel to Kernel Ticket - encrypted by target host’s secret key

HOSTNUM Sending Host
CLUSTERID Sending Ciuster
DATE Expiration Time
u3sai Random number
OVEC Session key
Kernel to Kerne! Authenticator - encrypted by session key
HOSTNUM Sending Host
CLUSTERID Sending Cluster
DATE Timestamp
u32! Sequence number
-23-

I
4.7.3 Secret keys
The following types of keys are maintained:
KERNEL KEY
Unique to a particular kernel and known to that kemel and its cluster's authentication
service.

SESSION KEY
Unique to a particular link between two specific kemels. Session keys will be used in both
directions. These keys will be generated by an Authentication Manager and handed lo the
kernels in a Kernel to Kernel ticket, described in section 4.7 .5.3.

INTER-CLUSTER AUTHENTICATION KEY
Unique to a particular pair of clusters. Known to the Authentication Managers of both
clusters and used for private communications between them.

4.7.4 Speclal Groups

A special authentication group is supported to simplify cluster administration, the CronusOperators
group. The UID of this group is a well-known constant. This group existed in Cronus before cluster
support was added. The CronusOperators group essentially defines a Cronus environment's super or
privileged users. Multicluster Cronus prevents one organization’s super users from aiso automatically
being considered super users in other organizations.

Each cluster is responsibie for designating certain principals as being CronusOperators. This is done
by using the conventional facilitie. of the authentication service for establishing group memberships. By
convention, CronusOperators are aliowed to modify authentication and configuration service information
as they desire. (The Cronus installation scripts automatically set this up.)

Mutticluster Cronus prevents one cluster's CronusOperators from being able to modify administrative
data in another cluster. If a request comes from a remote cluster, and its sendar claims {0 be a member

ot CronusOperators, this ciaim is ignored. The mention of the CronusOperators group in the sending
process’s access group set (AGS) is deleted by the receiver before performing access checks.

4.7.5 Protocols
The foliowing sections provide detailed outlines for several of the low-level communications protocois

used in multicluster Cronus. The notation “[packet]somekey” is used to mean that the packet (or
whatever is in the brackets) is encrypted with “somekey” as the encryption key.

4.7.5.1 Outgoing Reliable Request

1. Client library sets Secunty field in the Cronus request header from the value specified in the
INVOKECONTROL structure.

2 The library sends the message in cieartext to the kernel:

<Cronus Header><Request Header><Data Header><Data>

.24 -

3. The keme! determines the target host for the request, by either consulting the location cache or
consulting the Locator.

4. if the target host is the current host then no further security operations will be performed. the
request is handed to the proper manager.

5. The message is then sent to the target host using the procedure in 4.7.5.2.

4.7.5.2 Outgoing Rellabie Message

This procedure is used to send both request and reply messages reliably to remote hosts. If the
“rermote host” is the same as the sending host, the following procedure is dispensed with and the
message is immediately handed to the appropriate local process. The security of a reply message is set
to match that if its matching request.

1. if a reliable connection has not aiready been aestablished to the target host, then one is opened.
This connection is initially not secure.

2. if the message is SEC_NONE the kernel immaediately sends the message down the connection.
If the connection was previously secured, the connection's sequence counter is incremented.
{Each secured connection has a sequence counter that is set to zero when the connection is first
secured.)

3. Otherwise, the message is SEC_PRIVATE or SEC_AUTHENTICATED. H the connection has
not been secured, the connection is secured using the procedure in 4.7.5.3

4, The kernel will make an authenticator using the address of the target host, a timestamp (t), and
the incremented sequence number (s+1) --- alt of which are encrypted by the session key tor the
connection:

[Daddr.t.s+1]}Sessionkey

5. For SEC_PRIVATE messages, the kernel will encrypt the data portion of the messag:.
The message is sent down the connection and the sequence counter is incremented.

4.7.5.3 Getting the Kernel to Kernel Ticket

This is the procedure two kernel use to secure a connection between themselves. At the end of the
procedure, both kernels will possess a session key known only to them (and the authentication service).
The source kemal will also be certain that the target kernel is properly registered with the authentication
service, and is not a host unauthorized to run Cronus. The requests sent in the following procedure use
SEC_NONE,

1. The requesting kernel (RK) sends a request to its cluster's authentication service with the
address of the destination kermnel (DAddr) and a timestamp (t), all encrypted by the secret key of
the requesting kernel (RKkey). Each Cronus kemel in multicluster Cronus has a secret key
known only to it and its cluster's authentication service.

{DAddr t]RKkey

2. The authentication manager decrypts the message and generates a session key (skey) and an
expiration date for the ticket (exp).

.25.

3. If the destination kernel is in the same cluster, the authentication manager will be able 1o make
the ticket for the destination kernel using the address of the requesting kemel (RAddr) and the
secret key for the destination kernel {DKkey). The tickel has the following format:

[RAddr,exp,skey]DKkey

It the destination host is in a remote cluster, then the authentication manager obtains the ticket
from the remote cluster’'s authentication service as follows. If the destination host's cluster is not
known, a request is first sent to the host asking it what cluster it is in.

A. The local authentication manager will send the address of the requesting kernel, the
address of the destination kernel, the session key, the expiration date, and the timestamp
encrypted by the secret key shared by the authentication services in the two clusters
{Authkey). If hosts in two clusters are to communicate with each other securely, a
mutual secret key must first be established for use between the two authentication
services. The authentication manager determines the appropriate Authkey to use based
on the ID of the remote cluster.

{DAddr,RAddr,exp,skey tJAuthkey

B. The remote cluster's authentication manager will decrypt the message and form a ticket
for the destination kernel encrypted by the key of the destination kernel, as in Step 3.
C. The remote cluster authentication manager will increment the timestamp and return the
message back to the first authentication manager:
{t+1, [RAddr,exp,skey]DKkey]Authkey

D. The local authentication manager will then check the timestamp increment and extract
the ticket.

The following will then be returned to the requesting kernet:
[DAddr.exp,skey.t+1, [RAddr,exp,skey]DKkey]RKkey

The requesting kemel unwraps the above using its secret key. It extracts the session key (skey), and the
ticket. It checks the timestamp and DAddr for evidence of foul play. Then it sends the ticket together
with an authenticator to the destination kernel. The destination karnet unwraps the ticket with its secret
key, which reveals the session key. it checks the authenticator for evidence of foul play. At this point,
both kernels possess the session key and can transmit messages in privacy.

4.7.5.4 incoming Reliable Message
The procedure used o process Incoming reply or request messages is as follows.

1. it the connection was secured, the kerne!l increments the sequence counter. If security is not
used it will hand the message to the destination process with the access group set (AGS) (the
identity of the sender) set to NULL.

2. Otherwise, the kerne! will unwrap the authenticator using its session key and check it. If the
message is a reply, the message is rejected if its security does not match that of its request. in

-26-

addition, the authenticator for a reply includes the sequence number on its request. If this does
not match the actual sequence number on the request, the reply is rejected.

The kernel will decrypt the data pant of the message tor SEC_PRIVATE messages.
The kemel then hands the message to the proper iocal process.

4.7.5.5 Encryption Algorithm

We had intended to use the DES encryption algorithm. However, the slow speed of software DES
encryption presented several problems. First, perdformance of the system significantly suffered.
Hardware DES encryption would significantly boost performance. Second, the siow speed of DES
encryption meant the Cronus Kernel became unresponsive for significant periods of time. The encryption
of a message is not multiplexed with other activity in the kemel. A local process attempting to
communicate with the kernel while it is busy encrypting a large message will not receive a response for a
significant amount of time. The local process will eventually time out and incorrectly assume the kemet is
dead. The process then returns “ipc failure” errors for RPC's. To work around these problems, the
system currently uses exclusive-or encryption. If in the future the kernel is improved so that it multiplexes
encryption with other activity, software DES can be used. it is interesting to note that other distriouted
systerns have encountered similar problems and were forced to use exclusive-or encryption as a work
around (SAT89].

-27 -

Chapter 5. Conciusions

Multicluster Cronus supports organizations wishing to cooperate and share distributed services, but
still retain autcnomy and control over their own pant of the distributed environment. This repon discussed
why this was not possible in older versions of Cronus. Multicluster Cronus modeis a set of hosts
operating under an autonomous authority as a cluster.

Clusters establish service-sharing relationships among themselves by explicitly declaring imports,
exports, and service domains. These relationships are stored in each cluster’s configuration service.

The basic supporting mechanism for multicluster operation is the Locator. The Locator was totally
redesigned for Multicluster Cronus. The Locator makes use of the information stored in the configuration
service 10 narrow the search for an object. The Locator is capable for finding an object regardless of the
cluster it resides in.

Applications sometimes need control over what cluster a request is carried out in. To permit this, the
Cronus INVOKECONTROL structure was expanded.

Older versions of Cronus suffered from a limit on the maximum number of concurrent reliable
connections a kemel can have open. This limit was overcome in Multicluster Cronus. Overcoming this
limit makes application development much easier since the number of reliable connections needed is now
irrelevant. Previously, an application developer would have to use unreliable, instead of reliable,
communication when there was a danger of hitting the limit.

Authentication was also improved in Multicluster Cronus. Authentication suggests several avenues
for future study and work. First the kernel should be upgraded so that it multiplexes encryption activity
with other activities. Second, the scheme could be extended to inciude unreliable, as well as reliable,
messages. Currently unreliable messages are ail unauthenticated and privacy is not supported. Third,
the scheme could also be extended 1o include direct connections. The protocol used to establish a direct
connection is authenticated, but authentication of each message and privacy on a direct connection are
not supported. By supporting private direct connections, much encryption activity could be offloaded from
the kernel, by having the system pretfer to send private messages over direct connections.

-28 -

Chapter 6. References

[BS89] Berets, J., Sands, R., “Introduction to Cronus,” Technical Report 6986, BBN systems and
Technologies, January 1989.

[SAT89] Satyanarayan, M., “Integrating Security in a Large Distributed System,” ACM Transactions on
Computer Systems, Vol. 7 No. 3, Association for Computing Machinery, August 1989, page 272.

[WFNSQ] Walker, E., Floyd, R., Neves, P., “Asynchronous Remote Operation Execution in Distributed
Systems,” Proceedings of the 10th Int'l Conference on Distributed Computing Systems, IEEE Computer
Society, May 1890, pp. 253-259.

U S GOVERNMENT PRINTING OFFICE [vvi- i a vy i-bd/ 0y

-29-

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of c3r systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computatinnal sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

